Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(11): 13869-13881, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466181

RESUMO

Poly(ethylene glycol) methyl ether methacrylate polymer networks (PEO-based networks), with or without anionic bis(trifluoromethanesulfonyl)imide (TFSI)-grafted groups, are promising electrolytes for Li-metal all solid-state batteries. Nevertheless, there is a need to enhance our current understanding of the physicochemical characteristics of these polymer networks to meet the mechanical and ionic conductivity property requirements for Li battery electrolyte materials. To address this challenge, our goal is to investigate the impact of the cross-linking density of the PEO-based network and the ethylene oxide/lithium ratio on mechanical properties (such as glass transition temperature and storage modulus) and ionic conductivity. We have synthesized a series of cross-linked PEO-based polymers (si-SPE for single ion solid polymer electrolyte) via solvent-free radical copolymerization. These polymers are synthesized by using commercially available lithium 3-[(trifluoromethane)sulfonamidosulfonyl]propyl methacrylate (LiMTFSI), poly(ethylene glycol)methyl ether methacrylate (PEGM), and [poly(ethylene glycol) dimethacrylate] (PEGDM). In addition, we have synthesized a series of cross-linked PEO-based polymers (SPE for solid polymer electrolyte) using LiTFSI as the ionic species. Most of the resulting polymer films are amorphous, self-standing, flexible, homogeneous, and thermally stable. Interestingly, our research has revealed a correlation between ionic conductivity and mechanical properties in both the SPE and si-SPE series. Ionic conductivity increases as glass transition temperature, α relaxation temperature, and storage modulus decrease, suggesting that Li+ transport is influenced by polymer chain flexibility and Li+/EO interaction.

2.
ACS Appl Mater Interfaces ; 15(50): 58794-58805, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055784

RESUMO

Hybrid solid electrolytes (HSEs) aim to combine the superior ionic conductivity of inorganic fillers with the scalable process of polymer electrolytes in a unique material for solid-state batteries. Pursuing the goal of optimizing the key metrics (σion ≥ 10-4 S·cm-1 at 25 °C and self-standing property), we successfully developed an HSE based on a modified poly(ethylene oxide):LiTFSI organic matrix, which binds together a high loading (75 wt %) of Li6PS5Cl particles, following a solvent-free route. A rational study of available formulation parameters has enabled us to understand the role of each component in conductivity, mixing, and mechanical cohesion. Especially, the type of activation mechanism (Arrhenius or Vogel-Fulcher-Tammann (VFT)) and its associated energy are proposed as a new metric to unravel the ionic pathway inside the HSE. We showed that a polymer-in-ceramic approach is mandatory to obtain enhanced conduction through the HSE ceramic network, as well as superior mechanical properties, revealed by the tensile test. Probing the compatibility of phases, using electrochemical impedance spectroscopy (EIS) alongside 7Li nuclear magnetic resonance (NMR), reveals the formation of an interphase, the quantity and resistivity of which grow with time and temperature. Finally, electrochemical performances are evaluated by assembling an HSE-based battery, which displays comparable stability as pure ceramic ones but still suffers from higher polarization and thus lower capacity. Altogether, we hope these findings provide valuable knowledge to develop a successful HSE, by placing the optimization of the right metrics at the core of the formulation.

3.
J Am Chem Soc ; 145(35): 19207-19217, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37615605

RESUMO

Nanoscale heterostructures of covalent intermetallics should give birth to a wide range of interface-driven physical and chemical properties. Such a level of design however remains unattainable for most of these compounds, due to the difficulty to reach a crystalline order of covalent bonds at the moderate temperatures required for colloidal chemistry. Herein, we design heterostructured cobalt silicide nanoparticles to trigger magnetic and catalytic properties in silicon-based materials. Our strategy consists in controlling the diffusion of cobalt atoms into silicon nanoparticles, by reacting these particles in molten salts. By adjusting the temperature, we tune the conversion of the initial silicon particles toward homogeneous CoSi nanoparticles and core-shell nanoparticles made of a CoSi shell and a silicon-rich core. The increased interface-to-volume ratio of the CoSi component in the core-shell particles yields distinct properties compared to the bulk and homogeneous nanoparticles. First, the core-shell particles exhibit increased ferromagnetism, despite the bulk diamagnetic properties of cobalt monosilicide. Second, the core-shell nanoparticles act as efficient precatalysts for alkaline water oxidation, where the nanostructure is converted in situ into a layered cobalt silicon oxide/(oxy)hydroxide with high and stable oxygen evolution reaction (OER) electrocatalytic activity. This work demonstrates a route to design heterostructured nanocrystals of covalent intermetallic compounds and shows that these new structures exhibit very rich, yet poorly explored, interface-based physical properties and reactivity.

4.
Angew Chem Int Ed Engl ; 62(26): e202303487, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042950

RESUMO

Mixed-anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4 Si2 O7 Cl2 . We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon-based connectors from a non-oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed-anion solids.


Assuntos
Nanoestruturas , Cloreto de Sódio/química , Ânions/química , Nanoestruturas/química , Zinco/química , Dióxido de Silício/química , Cloretos/química , Catálise , Eletroquímica/métodos
5.
Small ; 17(23): e2101515, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33955146

RESUMO

Rechargeable aqueous aluminium batteries are the subject of growing interest, however, the charge storage mechanisms at manganese oxide-based cathodes remain poorly understood. In essense, every study proposes a different mechanism. Here, an in situ spectroelectrochemical methodology is used to unambiguously demonstrate that reversible proton-coupled MnO2 -to-Mn2+ conversion is the main charge storage mechanism occurring at MnO2 cathodes for a range of slightly acidic Al3+ -based aqueous electrolytes, with the Al3+ hexaaquo complex playing the key role of proton donor. In Zn/MnO2 assemblies, this mechanism is associated with high gravimetric capacities and discharge potentials, up to 560 mAh g-1 and 1.65 V respectively, attractive efficiencies (CE > 99.5% and EE > 82%) and excellent cyclability (almost 100% capacity retention over 1 400 cycles at 2 A g-1 ). Finally, a critical analysis of the data previously published on MnOx cathodes in Al3+ -based aqueous electrolytes is conducted to conclude on a universal charge storage mechanism, i.e., the reversible electrodissolution/electrodeposition of MnO2 .

6.
J Mater Chem B ; 9(21): 4309-4318, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34013947

RESUMO

In this study, the electrospinning technique is shown to be a viable method for the synthesis of a bacteria-encapsulating bioanode. A coaxial setup was designed to yield in one step a bioanode made of two fibers networks: one encapsulating the electroactive bacteria Shewanella oneidensis and the other one providing the necessary conductivity for electron transport throughout the bioelectrode. The electrical conductivity of this "integrated bioanode" (∼10-2 to 10-3 S cm-1) was deemed satisfactory and it was then included into a microbial fuel cells (MFC). The resulting MFC exhibited electricity generation. We further demonstrate that this electrode can be cryodesiccated and still exhibits an electrochemical activity once integrated into the MFC reactor. Its volume current and power densities were similar to those recorded for the fresh electrospun bioanode (up to 3260 A m-3 and 230 W m-3 for the thin cryodesiccated bioanode (∼410 µm)). Such impressive volume current densities for thin electrospun systems may be for instance envisioned to be applied to wearable or paper-based MFCs which require a certain flexibility.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Eletroquímicas/métodos , Eletrodos , Desenho de Equipamento , Shewanella/isolamento & purificação , Meios de Cultura , Dessecação , Técnicas Eletroquímicas/instrumentação , Shewanella/metabolismo
7.
Nanoscale ; 12(28): 15209-15213, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32638791

RESUMO

We report phase selective synthesis of intermetallic nickel silicide nanocrystals in inorganic molten salts. NiSi and Ni2Si nanocrystals are obtained by reacting a nickel(ii) salt and sodium silicide Na4Si4 in the molten LiI-KI inorganic eutectic salt mixture. We report that nickel silicide nanocrystals are precursors to active electrocatalysts in the oxygen evolution reaction (OER) and may be low-cost alternatives to iridium-based electrocatalysts.

8.
Sci Rep ; 10(1): 8264, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427954

RESUMO

Sedimentary pyrite (FeS2) is commonly thought to be a product of microbial sulfate reduction and hence may preserve biosignatures. However, proof that microorganisms are involved in pyrite formation is still lacking as only metastable iron sulfides are usually obtained in laboratory cultures. Here we show the rapid formation of large pyrite spherules through the sulfidation of Fe(III)-phosphate (FP) in the presence of a consortium of sulfur- and sulfate-reducing bacteria (SRB), Desulfovibrio and Sulfurospirillum, enriched from ferruginous and phosphate-rich Lake Pavin water. In biomineralization experiments inoculated with this consortium, pyrite formation occurred within only 3 weeks, likely enhanced by the local enrichment of polysulfides around SRB cells. During this same time frame, abiotic reaction of FP with sulfide led to the formation of vivianite (Fe3(PO4)2·8H2O) and mackinawite (FeS) only. Our results suggest that rates of pyritization vs. vivianite formation are regulated by SRB activity at the cellular scale, which enhances phosphate release into the aqueous phase by increased efficiency of iron sulfide precipitation, and thus that these microorganisms strongly influence biological productivity and Fe, S and P cycles in the environment.


Assuntos
Campylobacteraceae/metabolismo , Desulfovibrio/metabolismo , Ferro/metabolismo , Lagos/microbiologia , Consórcios Microbianos , Sulfatos/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Campylobacteraceae/genética , Campylobacteraceae/isolamento & purificação , Desulfovibrio/genética , Desulfovibrio/isolamento & purificação , Oxirredução , Fosfatos/metabolismo
9.
ACS Appl Bio Mater ; 3(5): 2948-2957, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35025341

RESUMO

Rebuilding biological environments is crucial when facing the challenges of fundamental and biomedical research. Thus, preserving the native state of biomolecules is essential. We use electrospinning (ES), which is an extremely promising method for the preparation of fibrillar membranes to mimic the ECM of native tissues. Here, we report for the first time (1) the ES of pure and native collagen into a self-supported membrane in absence of cross-linker and polymer support, (2) the preservation of the membrane integrity in hydrated media in absence of cross-linker, and (3) the preservation of the native molecular structure and recovery of the hierarchical assembly of collagen. We use a multiscale approach to characterize collagen native structure at the molecular level using circular dichroism, and to investigate collagen hierarchical organization within the self-supported membrane using a combination of multiphoton and electron microscopies. Finally, we show that the membranes are perfectly suited for cell adhesion and spreading, making them very promising candidates for the development of biomaterials and finding applications in biomedical research.

10.
RSC Adv ; 10(15): 8982-8988, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35496548

RESUMO

Chemical doping and other surface modifications have been used to engineer the bulk properties of materials, but their influence on the surface structure and consequently the surface chemistry are often unknown. Previous work has been successful in fluorinating anatase TiO2 with charge balance achieved via the introduction of Ti vacancies rather than the reduction of Ti. Our work here investigates the interface between this fluorinated titanate with cationic vacancies and a monolayer of water via density functional theory based molecular dynamics. We compute the projected density of states for only those atoms at the interface and for those states that fall within 1 eV of the Fermi level for various steps throughout the simulation, and we determine that the variation in this visualization of the density of states serves as a reasonable tool to anticipate where surfaces are most likely to be reactive. In particular, we conclude that water dissociation at the surface is the main mechanism that influences the anatase (001) surface whereas the change in the density of states at the surface of the fluorinated structure is influenced primarily through the adsorption of water molecules.

11.
ACS Nano ; 13(10): 11372-11381, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31584800

RESUMO

Unveiling the mechanism of electrocatalytic processes is fundamental for the search of more efficient and stable electrode materials for clean energy conversion devices. Although several in situ techniques are now available to track structural changes during electrocatalysis, especially of water oxidation, a direct observation, in real space, of morphological changes of nanostructured electrocatalysts is missing. Herein, we implement an in situ electrochemical Transmission Electron Microscopy (in situ EC-TEM) methodology for studying electrocatalysts of the oxygen evolution reaction (OER) during operation, by using model cobalt oxide Co3O4 nanoparticles. The observation conditions were optimized to mimic standard electrochemistry experiments in a regular electrochemical cell, allowing cyclic voltammetry and chronopotentiometry to be performed in similar conditions in situ and ex situ. This in situ EC-TEM method enables us to observe the chemical, morphological, and structural evolutions occurring in the initial nanoparticle-based electrode exposed to different aqueous electrolytes and under OER conditions. The results show that surface amorphization occurs, yielding a nanometric cobalt (oxyhydr)oxide-like phase during OER. This process is irreversible and occurs to an extent that has not been described before. Furthermore, we show that the pH and counterions of the electrolytes impact this restructuration, shedding light on the materials properties in neutral phosphate electrolytes. In addition to the structural changes followed in situ during the electrochemical measurements, this study demonstrates that it is possible to rely on in situ electrochemical TEM to reveal processes in electrocatalysts while preserving a good correlation with ex situ regular electrochemistry.

12.
ACS Omega ; 4(6): 10929-10938, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460191

RESUMO

Manipulating the atomic structure of semiconductors is a fine way to tune their properties. The rationalization of their modified properties is, however, particularly challenging as defects locally disrupt the long-range structural ordering, and a deeper effort is required to fully describe their structure. In this work, we investigated the photoelectrochemical properties of an anatase-type structure featuring a high content of titanium vacancies stabilized by dual-oxide substitution by fluoride and hydroxide anions. Such atomic modification induces a slight red-shift band gap energy of 0.08 eV as compared to pure TiO2, which was assigned to changes in titanium-anion ionocovalent bonding. Under illumination, electron paramagnetic resonance spectroscopy revealed the formation of TiIII and O2 - radicals which were not detected in defect-free TiO2. Consequently, the modified anatase shows higher ability to oxidize water with lower electron-hole recombination rate. To further increase the photoelectrochemical properties, we subsequently modified the compound by a surface functionalization with N-methyl-2-pyrrolidone (NMP). This treatment further modifies the chemical composition, which results in a red shift of the band gap energy to 3.03 eV. Moreover, the interaction of the NMP electron-donating molecules with the surface induces an absorption band in the visible region with an estimated band gap energy of 2.25-2.50 eV. Under illumination, the resulting core-shell structure produces a high concentration of reduced TiIII and O2 -, suggesting an effective charge carrier separation which is confirmed by high photoelectrochemical properties. This work provides new opportunities to better understand the structural features that affect the photogenerated charge carriers.

13.
Phys Chem Chem Phys ; 21(10): 5416-5423, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30789179

RESUMO

Transient electrochemical experiments associated with the collisions between hydrothermally synthesized LiCoO2 (LCO) nanoparticles/aggregates of different sizes and a polarized gold ultramicroelectrode (UME) were used as a new additive-free analytical tool applied to Li ion insertion compounds. The size of the LCO nanoparticles/aggregates, ranging from 75 to 450 nm, the diffusion coefficient of the LCO nanoparticles/aggregates in suspension (∼8 × 10-9 cm2 s-1), and the Li ion diffusion coefficient within crystalline LCO nanoparticles (∼1.3 × 10-11 cm2 s-1) were estimated from single collision events. Interestingly, the charge exchanged during each nanoparticle collision was related to the size of the corresponding LCO aggregate, which enables electrochemical sizing distribution measurement displaying evident concordance with optical techniques, including dynamic light scattering (DLS) and cryo-transmission electron microscopy (cryo-TEM). Studying the nanoparticle collision frequency on the UME surface as a function of the LCO nanoparticle concentration allows estimation of the diffusion coefficient of LCO nanoparticles/aggregates in suspension. Finally, from the current decay observed in chronoamperometry after LCO nanoparticle collision on the polarized UME surface, which corresponds to the LCO oxidation (i.e. the Li+ deinsertion reaction), the Li ion diffusion coefficient within the host crystalline material is estimated. This is a key parameter, which controls the cycle lifetime and charge rate in Li ion battery performance. This new approach thus allows a fine description of the nanoparticle properties, which includes sizing as well as estimation of the Li ion diffusion coefficient within the host crystalline material.

14.
PLoS One ; 14(2): e0212787, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794698

RESUMO

Both iron- and sulfur- reducing bacteria strongly impact the mineralogy of iron, but their activity has long been thought to be spatially and temporally segregated based on the higher thermodynamic yields of iron over sulfate reduction. However, recent evidence suggests that sulfur cycling can predominate even under ferruginous conditions. In this study, we investigated the potential for bacterial iron and sulfur metabolisms in the iron-rich (1.2 mM dissolved Fe2+), sulfate-poor (< 20 µM) Lake Pavin which is expected to host large populations of iron-reducing and iron-oxidizing microorganisms influencing the mineralogy of iron precipitates in its permanently anoxic bottom waters and sediments. 16S rRNA gene amplicon libraries from at and below the oxycline revealed that highly diverse populations of sulfur/sulfate-reducing (SRB) and sulfur/sulfide-oxidizing bacteria represented up to 10% and 5% of the total recovered sequences in situ, respectively, which together was roughly equivalent to the fraction of putative iron cycling bacteria. In enrichment cultures amended with key iron phases identified in situ (ferric iron phosphate, ferrihydrite) or with soluble iron (Fe2+), SRB were the most competitive microorganisms, both in the presence and absence of added sulfate. The large fraction of Sulfurospirillum, which are known to reduce thiosulfate and sulfur but not sulfate, present in all cultures was likely supported by Fe(III)-driven sulfide oxidation. These results support the hypothesis that an active cryptic sulfur cycle interacts with iron cycling in the lake. Analyses of mineral phases showed that ferric phosphate in cultures dominated by SRB was transformed to vivianite with concomitant precipitation of iron sulfides. As colloidal FeS and vivianite have been reported in the monimolimnion, we suggest that SRB along with iron-reducing bacteria strongly influence iron mineralogy in the water column and sediments of Lake Pavin.


Assuntos
Compostos Ferrosos/metabolismo , Lagos/microbiologia , Fosfatos/metabolismo , Sulfatos/metabolismo , Sulfetos/metabolismo , Bactérias Redutoras de Enxofre/metabolismo , Microbiologia da Água , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/genética
15.
Science ; 360(6386): 296-299, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29674588

RESUMO

Soft deformable materials are needed for applications such as stretchable electronics, smart textiles, or soft biomedical devices. However, the design of a durable, cost-effective, or biologically compatible version of such a material remains challenging. Living animal cells routinely cope with extreme deformations by unfolding preformed membrane reservoirs available in the form of microvilli or membrane folds. We synthetically mimicked this behavior by creating nanofibrous liquid-infused tissues that spontaneously form similar reservoirs through capillarity-induced folding. By understanding the physics of membrane buckling within the liquid film, we developed proof-of-concept conformable chemical surface treatments and stretchable basic electronic circuits.

16.
Bioelectrochemistry ; 120: 1-9, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29132011

RESUMO

In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between -0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (-0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes , Grafite/química , Shewanella/fisiologia , Eletricidade , Técnicas Eletroquímicas/instrumentação , Eletrodos , Transporte de Elétrons , Porosidade
17.
Microb Biotechnol ; 11(1): 39-49, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28401700

RESUMO

Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready-to-use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h. The double entrapment within the silica-carbon composite prevented bacterial release from the electrode but allowed a suitable mass transport (ca. 5 min after electron donor pulse), making the electrochemical characterization of the system possible. The artificial bioelectrodes were evaluated in three-electrode reactors and the maximum current displayed was ca. 220 and 150 µA cm-3 using acetate and lactate as electron donors respectively. Cyclic voltammetry of acetate-fed bioelectrodes revealed a sigmoidal catalytic oxidation wave, typical of more advanced-stage biofilms. The presence of G. sulfurreducens within composites was ascertained by SEM analysis, suggesting that only part of the bacterial population was in direct contact with the carbon fibres. Preliminary analyses of the transcriptomic response of immobilized G. sulfurreducens enlightened that encapsulation mainly induces an osmotic stress to the cells. Therefore, ready-to-use artificial bioelectrodes represent a versatile time- and cost-saving strategy for microbial electrochemical systems.


Assuntos
Fontes de Energia Bioelétrica , Carbono , Células Imobilizadas/metabolismo , Eletrodos/microbiologia , Geobacter/metabolismo , Sílica Gel , Eletricidade , Perfilação da Expressão Gênica , Geobacter/genética , Metabolismo , Viabilidade Microbiana , Pressão Osmótica
18.
J Phys Chem Lett ; 8(15): 3466-3472, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28686453

RESUMO

Recent findings revealed that surface oxygen can participate in the oxygen evolution reaction (OER) for the most active catalysts, which eventually triggers a new mechanism for which the deprotonation of surface intermediates limits the OER activity. We propose in this work a "dual strategy" in which tuning the electronic properties of the oxide, such as La1-xSrxCoO3-δ, can be dissociated from the use of surface functionalization with phosphate ion groups (Pi) that enhances the interfacial proton transfer. Results show that the Pi functionalized La0.5Sr0.5CoO3-δ gives rise to a significant enhancement of the OER activity when compared to La0.5Sr0.5CoO3-δ and LaCoO3. We further demonstrate that the Pi surface functionalization selectivity enhances the activity when the OER kinetics is limited by the proton transfer. Finally, this work suggests that tuning the catalytic activity by such a "dual approach" may be a new and largely unexplored avenue for the design of novel high-performance catalysts.

19.
Langmuir ; 33(37): 9288-9297, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28482152

RESUMO

Aqueous lithium-air batteries have very high theoretical energy densities, which potentially makes this technology very interesting for energy storage in electric mobility applications. However, the aqueous electrolyte requires the use of a watertight layer to protect the lithium metal, typically a thick NASICON glass-ceramic layer, which adds ohmic resistance and penalizes performance. This article deals with the replacement of this ceramic electrolyte by a hybrid organic-inorganic membrane. This new membrane combines an ionically conducting inorganic phase for Li ion transport (Li1.3Al0.3Ti1.7(PO4)3 (LATP) and a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer for water tightness and mechanical properties. The Li ion transport through the membrane is ensured by an interconnected 3-D network of crystalline LATP fibers obtained by coupling an electrospinning process with the sol-gel synthesis followed by thermal treatment. After an impregnation step with PVDF-HFP, hybrid membranes with different volumetric fractions of PVDF-HFP were synthesized. These membranes are watertight and have Li ion conductivities ranging from 10-5 to 10-4 mS/cm. The conductivity depends on the PVDF-HFP volume fraction and the fibers' alignment in the membrane thickness, which in turn can be tuned by adjusting the water content in the electrospinning chamber during the process. The alignment of fibers parallel to the membrane surface is conductive to poor conductivity values whereas a disordered fiber mat leads to interesting conductivity values (1 × 10-4 mS/cm) at ambient temperature.

20.
Phys Chem Chem Phys ; 19(14): 9630-9640, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28346552

RESUMO

Even though vanadium-modified hydroxyapatite (V-HAp) samples are very promising systems for oxidative dehydrogenation of propane, the incorporation of vanadium into the hydroxyapatite framework was reported to be limited and to lead to over-stoichiometric compounds. Here, the synthesis of a Ca10(PO4)6-x(VO4)x(OH)2 stoichiometric solid solution using a co-precipitation method is monitored in the whole composition range (0 ≤ x ≤ 6) by controlling the pH of the precipitation medium, with continuous (the first series of samples) or periodic (the second series of samples) addition of NH4OH during the precipitation step or during the maturation step, respectively. It is demonstrated that the changes in pH conditions result in materials of a substantial difference in terms of the final composition. From XRD patterns and Rietveld refinements, a solid solution V-HAp phase was found to be exclusively obtained for the first series of samples for x varying from 0 to 6. This also occurred in the second series of samples but only for x lower than 4. For 4 ≤ x ≤ 5.22, the materials were composed of a mixture of V-HAp and Ca2V2O7, whereas for a x value of 6 only Ca2V2O7 was formed. The predominance of polymeric V species in solution at a high vanadium concentration deduced from the diagram of speciation of vanadium accounts for the preferential formation of Ca2V2O7 under these particular conditions. However, provided that a higher pH value was maintained, isolated VO3(OH)2- species are predominant, which accounts for the incorporation of isolated vanadates into the hydroxyapatite framework and for the well-controlled stoichiometry with Ca/(P + V) ratios found to be close to 1.67. Such a very good accommodation of vanadium in the hydroxyapatite framework is illustrated by the characterization of the local surrounding of phosphorus and vanadium species using 31P and 51V NMR, Raman and UV-vis spectroscopies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...